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Abstract—The SMOS mission senses ocean salinity and soil
moisture by measuring Earth’s brightness temperature using
interferometry in the L-band. These interferometry measures
known as visibilities constitute the SMOS L1A data product. De-
spite the L-band is reserved for Earth observation, the presence
of illegal emitters cause radio frequency interferences (RFI) that
mask the energy radiated from the Earth and strongly corrupt
the acquired images. Therefore, the recovery of brightness tem-
perature from corrupted data by image restoration techniques is
of major interest. In this work we propose a variational model
to recover super-resolved, denoised brightness temperature maps
by decomposing the images into two components: an image T
that models the Earth’s brightness temperature and an image O
modeling the RFIs. The approach is totally new to our knowledge,
in the sense that it is directly and exclusively based on the
visibilities. Experiments with synthetic and real data support the
suitability of the proposed approach.

Index Terms—SMOS, MIRAS, RFI, non-differentiable convex
optimization, total variation minimization.

I. INTRODUCTION

HAVING the possibility to observe Earth variables such
as surface soil moisture (SSM) and sea surface salinity

(SSS) is crucial to obtain meteorological and climate pre-
dictions [1]. The SMOS satellite [2] carries an instrument
called MIRAS (Microwave Imaging Radiometer by Aperture
Synthesis) [3], [4], that provides indirect measures of the
corresponding brightness temperatures of both SSM and SSS,
in the L-band microwave, using interferometry and sensing the
so-called visibility function [5].

A. From brightness temperatures to visibilities: The MIRAS
instrument and the forward problem

The MIRAS instrument [3], [4] is composed of a set of
antennas. The interferometry principle used by the MIRAS
instrument leads from brightness temperatures to the visibility
function [5]. Let (Ak, Al) be any pair of its antennas; the visi-
bility function Vk,l is defined as the complex cross-correlation
between the received signals at Ak and Al:

Vk,l =
1√

ΩkΩl

∫∫
||ξ||≤1

Uk(ξ)U∗l (ξ)(Tb(ξ)−Tr)r̃kl(t)
e−i2πuTklξdξ√

1− ||ξ||2
.

(1)
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Here, Uk and Ul are the corresponding normalized voltage
patterns of the antennas and Ωk,Ωl their corresponding solid
angles; ukl is the frequency baseline associated to (Ak, Al).
The Cartesian coordinates ξ = (ξ1, ξ2) are the spatial domain
coordinates, which are restricted to the unit circle. Tr is the
physical temperature of the receivers (assumed the same for
all receivers); r̃kl is the Fringe-Wash function, a function of
the spatial delay t = ukl

T ξ
f0

, where f0 = c
λ0

is the central
frequency of observation. Note that the brightness temperature
Tb is a 2D function defined on the unit circle {ξ : ||ξ|| ≤ 1}. It
is worth mentioning that (1) is valid only for the interferomet-
ric mesurements, not for the zero-spacing ones (provided by
the NIRs). Moreover, this equation does not account for dual-
polarization nor full-polarization considerations which are the
two operating modes of MIRAS [5].

Since the support of the temperatures is the unit circle,
it is well known that the best regular sampling grid is a
hexagonal one [6], leading to the largest alias-free Field Of
View for a given spacing between the antennas [7]. The
antennas configuration chosen for the MIRAS instrument is
a Y-shaped array [7], shown in Figure 1 along with its
corresponding hexagonally sampled, star-shaped domain Ω.
The star-shaped domain Ω, known in aperture synthesis as
the (experimental) frequency coverage [8, Ch. 5], is contained
within the hexagon, hence requiring extrapolation to recover
the missing parts (see Figure 2). Because of other practical

Fig. 1. Diagram of the MIRAS instrument onboard of SMOS satellite
(from [9]) and the star-shaped, hexagonally sampled visibilities domain
derived from it. The number of antennas in the miras instrument is 69: 22
antennas type Light-Weight Cost-Effective Front-End (LICEF) in each arm,
plus three antennas of type Noise Level Injection Radiometers (NIR) located
in-between each arm in the center of the instrument.

issues, the final separation between antennas in the MIRAS
instrument is d = 0.875 wavelengths. This value is larger than
the critical sampling distance on a hexagonal grid (which is
d = 1/

√
3 wavelengths), and then, some amount of aliasing
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Fig. 2. The absence of information beyond the star-shaped domain Ω makes
the recovery of the brightness temperature map an ill-posed problem.

is introduced on the spatial domain. As shown in Figure 3,
the Alias-Free Field of View is the small central zone in
the hexagon delimited by the blue dashed lines. Nevertheless,
because of the tilt of the satellite acquisition system, most of
the aliasing comes from the intersection between the Earth
disk with the known cold sky, and therefore it is customary
to consider the Field of View delimited by the red plain lines,
generating the so-called Extended Alias-Free Field of View
(E-AF-FOV) [7].

Normalized spatial domain (ξ1, ξ2)

Fig. 3. Alias Free - Field of View (AF-FOV) – zone delimited by the unity
circle contours in blue lines – and the corresponding Extended Alias-Free
Field of View (E-AF-FOV) in red lines.

B. Restoring brightness temperatures from visibilities: An ill-
posed inverse problem

Now, going back to the forward problem (1), if we denote
by T = Tb−Tr, the samples of T in the hexagonal grid could
be obtained from the visibility samples by solving the linear
system GT = V , where matrix G represents the discrete
linear operator given by (1). Of course, the inversion of the
forward problem is ill-posed since G is not invertible because
the number of visibility measures is significantly lower than
the samples of T . The ill-posedness of the problem can also be
interpreted as the lack of information beyond Ω, as illustrated
in Figure 2. Hence, additional constraints must be added to the
model. In [10], the authors propose to solve it as a constrained
least square problem, imposing that T has no frequency

components outside Ω. This problem can be formulated as
the unconstrained minimisation of ‖V −GF∗ZΩT̂‖22 on T̂ ,
where F∗ denotes the matrix corresponding to the hexagonal
Inverse Fourier Transform, ZΩ the zero padding operator and
T̂ the Fourier coefficients of T for frequencies in Ω.

Let J = GF∗ZΩ, then T̂ = J+V where J+ is the pseudo-
inverse of J: J+ = (J∗J)−1J∗. This is the way the L1B
product is obtained, and corresponds exactly to T̂ . In what
follows we shall refer to the L1B data product as DB.
Using L1B data, T can be recovered from DB very easily: it
is the inverse Fourier transform of DB: T = F∗ZΩDB. As we
shall see later, this simple Fourier inversion leads to potentially
very strong Gibbs effects which are partially alleviated (as
proposed by [10]) by the use of a Blackman window B: T =
F∗BZΩT̂ , which can be seen as a kind of linear Tikhonov
regularization:

T = arg min
T

‖B(FT −DB)‖22. (2)

This approach has been used for five years with some success.
However, linear approaches such as the one described above
can be improved by the use of more sophisticated image
models that nowadays can be solved thanks to recent advances
in optimization techniques, such as modern splitting methods
and non-smooth, non-convex optimization methods. In SMOS
image restoration, the limitation of linear methods like the
one described above are twofold. First, zero-padding in the
frequency domain leads to blurry images, specially in the
edges. Second, measurements may be polluted by outliers or
radio frequency interferences (RFI); indeed, despite the fact
that according to international radio regulations, the L-band
is exclusively allocated to the Earth observation, soon after
SMOS was launched the data revealed there were many signals
being transmitted within this protected passive band, rendering
a great amount of data unusable for scientific purposes.
Because these outliers have frequencies beyond Ω and their
power is far stronger than Earth radiation, very strong Gibbs
effects can be seen on the final brightness temperature images
(see for instance the top left image in Figure 11 corresponding
to western Europe, obtained by the inverse Fourier transform
of the L1B product).

C. Proposed approach and contributions

In the present work we propose to solve the inverse prob-
lem defined by the forward problem (1), by introducing a
variational formulation that explicitly models the formation of
visibilities as a superposition of the Earth’s natural brightness
temperatures and the RFI emitters. As it will be demonstrated
later, the proposed approach automatically removes signal
effects generated from illegal emitters (outliers), while at
the same time extrapolates the image spectrum in order to
minimize Gibbs effects. Another aspect in which our approach
differs from the previous SMOS image restoration techniques,
is that instead of using the L1B product, we work directly
with the L1A data product (the visibilities). As we will show
in the following sections, this seemingly simple data change
is not easy to implement because of the lack of regularization
in the L1A data, and because of several issues that have
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to be considered to make the inverse problem numerically
tractable. To our knowledge, this is the first work that tackles
the problem directly and exclusively from the L1A product.
A preliminary, short version of this work was presented in
IGARSS 2014 [11].

The article is organized as follows. In Section II we present
the model on which our restoration approach is based, and we
explain how this model, stated as a variational problem, can
be solved with state of the art optimization algorithms. Then,
in Section III we describe in detail a few aspects that are
fundamental to make the problem numerically tractable and
to improve results. The definitive implementation is presented
in Section IV, where we discuss major issues like parameter
choices and numerical optimization. In Section V we present
experiments with synthetic data that validate the proposed
approach, we apply our method to real L1A SMOS data and
we compare it with a similar approach we proposed in [12],
which is based on the L1B data product. Conclusions and
future work are presented in Section VI.

II. MODELIZATION AND VARIATIONAL FORMULATION: A
FIRST APPROXIMATION TO THE PROBLEM

Visibilities and brightness temperatures are related by the
linear operator given by (1). In its discrete form, using matrix
notation1, this is GT̃ = V . As before, the goal is to obtain the
original temperatures image T̃ from the given visibilities V ,
knowing that, as noted before, G is not invertible. We propose
to model the observed brightness temperature image T̃ as

T̃ = T +O, (3)

where T is the non-polluted Earth’s brightness temperature
image and O is the outliers’ image generated by the RFIs that
are assumed to be sparse pointwise sources (delta functions).
Because of the physical acquisition system, the visibilities are
corrupted with noise, that under realistic assumptions and after
a whitening process can be considered to be Gaussian with 0
mean and standard deviation σn. The final equation is then:

GT̃ = G(T +O) = V

DA = V + n,
(4)

where V is the vector of ideal visibilities, and DA is the
vector of measured visibilities which are corrupted by additive
Gaussian noise n as described before.

A. Variational formulation

We propose to recover u by solving the following con-
strained optimization problem:

minT,O {TV(T ) + µS(O)}
s.t. ‖G(T +O)−DA‖22 ≤ |Ω|σ2

n,
(5)

where TV (·) denotes the total variation semi-norm and S(·)
is a norm such that when minimized promotes sparsity, for
instance the `1 norm or `0 counting measure. The total vari-
ation is used to super-resolve T beyond the spectral support

1For the sake of simplicity, we use the same notation to refer to an image
and its vectorized form. Disambiguation follows easily from the context.

Ω while avoiding Gibbs oscillations; the sparsity operator is
chosen as the model for the outliers’ image O since this image
is zero almost everywhere and the RFIs are sparse. Parameter
µ controls the trade-off between both terms; its choice can
be formally derived from geometric considerations on the
outliers, and will be discussed in detail in Section IV-A. The
data fit term is derived directly from the data noise model
n = G(T +O)− V . The bound |Ω|σ2

n represents the area of
Ω times the visibilities variance σ2

n. This variance as explained
before, is a realistic approximation of the acquisition system
noise (see Section IV for further explanation).

As usual, problem (5) can be reformulated as an uncon-
strained one:

minT,O ‖G(T +O)−DA‖22 + λ(TV(T ) + µS(O)), (6)

where the Lagrange multiplier λ will be chosen to take
the unique value for that ensures equivalence between both
problems. The derivation of this value will also be addressed
in Section IV-A.

Assume for now that S(·) = `1. Then this functional is
convex, and despite not being strictly convex, for the case
of S(·) and TV (·) it has a unique local minimum (see for
instance [13], [14]). However, a careful treatment has to be
taken since the term multiplied by λ is non-differentiable.
Fortunately, there exist optimization methods to solve this
kind of problems, for instance the Forward-Backward splitting
algorithm [15]. We briefly describe it here for the sake of
completeness. Let E(x) = E1(x) + E2(x), where E1 and
E2 are convex functions such that E1 is differentiable with
Lipschitz gradient, and E2 is a simple function, in the sense
that its associated proximal operator

proxγE2
(x) = arg inf

y
E2(y) +

1

2γ
‖x− y‖2 (7)

admits a closed form or a simple algorithm to compute it. If
these hypotheses hold, the following generic algorithm can be
derived: for each k ∈ N, the k-th iteration starting from seed
x0 = (T 0, O0) is given by{

xk+1/2 = xk − γ∇E1(xk)
xk+1 = proxγE2

(xk+1/2).

In order to ensure convergence to the minimizer, γ must be
smaller than 2/L, where L is the Lipschitz constant of ∇E1.
Now, setting

E1(T,O) =‖G(T +O)−DA‖22,
E2(T,O) =λ(TV(T ) + µS(O))

yields

∇E1(T,O) =

(
G∗G(T +O)− V
G∗G(T +O)− V

)
,

proxγE2
(T,O) =

(
proxγλTV(T )

proxγλµ‖·‖1(O)

)
.

As for proxγλµ‖·‖1(O), it is straightforward to show from (7)
that it corresponds to the soft thresholding operator

s∆(t) =

{
sign(t)(|t| −∆) if |t| ≥ ∆,
0 if |t| < ∆.
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This algorithm converges to the unique global minimizer that
corresponds to the solution of problem (5) with sparsity op-
erator S(O) = ‖O‖1. We use this solution as an initialisation
for the second step, where the sparsity operator is chosen to
be S(O) = ‖O‖0, which is non-convex. For this problem,
the same Forward-Backward algorithm can be considered and
is guaranteed to converge to a local minimizer [16]. Now,
instead of the soft thresholding, the proximal operator for
S(O) = ‖O‖0 becomes the hard thresholding h√2γλµ(t) =
t1{|t|≥

√
2γλµ} (Appendix A).

III. NUMERICAL ISSUES

A. Size of matrix G∗G

Many papers have already been published on the effects of
the assumption of a Fourier like modeling operator, instead
of using the actual instrument modeling given by operator G.
It turns out that even if there are some uncertainties on the
actual instrument modeling (namely on the antenna patterns),
it is however better to consider G in the inverse problem rather
than to assume a Fourier like one (like the restoration method
given by (2)), the reconstruction error being much larger with
the later one. Of course solving an inverse problem based on
G has an impact on the size of the gradient term and therefore
on the computational time and the amount of required memory.
More precisely, when we look at the algorithm developed so
far, we realize that we perform a multiplication by matrix
G∗G at each iteration.

Let us give a brief analysis of the size of matrix G. The
dimension of vector T is given by the spatial sampling grid that
one chooses to use. A reasonable choice is 128×128 = 16384.
Larger sampling rates lead to larger matrices thus increasing
the computational burden. This is the size of vector T is for
a a single simple polarization, which is the case considered
in this work. If we had considered all the polarizations
(horizontal, vertical and dual), since in the dual polarization
the measurements are complex numbers and each of them is
represented with two real entries, the size would have been
16384 × 4 = 65536. As for V , The number of antennas
determines its dimension. The total number of receptors for the
horizontal (or the vertical) polarities is 69, leading to (69x68)/2
= 2346 cross-correlations – which are complex numbers – plus
3 supplementary real measurements corresponding to inverse
polarization. Since each complex number is represented with
two entries (its real and the imaginary parts), the size of V for
the horizontal (or vertical) polarization is 2346×2+3 = 4695.
This is then the size of the V vector considered in this work.
Again, if all the polarizations were considered, the size of V
would have been 15996 (4695(horizontal)+4695(vertical)+
3302 × 2(dual) = 15996). Consequently, in this work, the
dimension of matrix G – that maps brightness temperatures
to visibilities – is 15996× 16384.

It follows that here the dimension of matrix G∗G is 16384×
16384. This matrix is a dense matrix, which means that at
each iteration, a great number of additions and multiplications
are performed. Thus, explicit multiplication by this matrix at
each iteration of the algorithm is computationally intractable.
However, a change of basis to the Fourier domain yields the

following expression for the gradient term:

∇E1(T,O) = F∗((GF∗)∗GF∗F(T +O)− (GF∗)∗V ).

Here, F denotes the Cooley and Tuckey standard Fast Fourier
Transform, that we use instead of matrix multiplication by the
hexagonal DFT matrix F in order to accelerate computations.
The use of the standard (rectangular) FFT on a hexagonal
lattice can be made possible by re-projecting the samples in a
rectangular grid (see [7] or [17, Section III]). The advantage of
the previous expression is that it reveals a highly sparse matrix
FG∗GF∗: to keep the energy at 99.99%, we only need to keep
a fraction of 0.0008 of its entries.
The property of being sparse in the Fourier domain can be
easily understood from the image formation point of view: Ac-
cording to (1) visibilities are roughly the Fourier transform of
the centered brightness temperatures times a function f which
varies smoothly with respect to ξ, k and l. If that function was
constant w.r.t. k and l, then G would be a diagonal matrix.
This is not the case, but since f is relatively smooth, the off-
diagonal coefficients of G exhibit fast decay. Consequently,
we can modify the Forward-Backward algorithm described
above to perform the minimization in the Fourier domain. This
algorithm is summarized in Algorithm 1.

Proposed method with Fordward-Backward
implementation

input : An upper bound L ≥ L(E1) on the Lipschitz
constant L(E1) of ∇(E1)

output: A brightness temperature image T , an outliers
image O

initialization:
Step 0: Set T 0 = 0 and O0 = 0;

Step k (k ≥ 0):
T k+1/2 = T k − γF∗(FG∗GF∗F(T k +Ok)− FG∗)V
Ok+1/2 = Ok − γF∗(FG∗GF∗F(T k +Ok)− FG∗)V
T k+1 = proxγλTV(T k+1/2)

Ok+1 = sγλµ(Ok+1/2).

Algorithm 1: Proposed method with Fordward-Backward
implementation in the Fourier domain.

B. Spectral TV

In order to reduce the “staircasing” effect inherent to many
TV minimization methods [18], [19], we use an approach
inspired by the Spectral TV method proposed by Moisan [20].
In Moisan’s approach, staircaising reduction is achieved by:
(i) Computing image derivatives not by finite differences but
analytically on the Fourier series expansion; (ii) Approximat-
ing the continuous TV as a Riemann integral over a grid at
least two times finer than the critical sampling rate. In our
case, instead of doubling the sampling rate of ∇T , we chose
to extend the spectral domain of T to an intermediate cell H,
in-between the star domain Ω where measures Ô are taken,
and the cell C corresponding to the (largely overcritical) spatial
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sampling rate of T (Figure 4).
There is another reason to use the Spectral TV on this
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Fig. 4. Intermediate, hexagonally shaped cell H used to reduce the
staircaising effect inherent to discrete TV minimisation methods.

problem. SMOS data is captured on a hexagonal grid, and
thus the variables T and O are modeled on a hexagonal grid
as well. Most TV algorithms are based on the computation
of derivatives using discrete differences, that are not straight-
forward to adapt to the hexagonal grid. As stated before,
the Spectral TV does not use finite differences to compute
the image derivatives: they are computed analytically in the
Fourier expansion. What is more, because of how the grids are
defined on SMOS, we could implement the Fourier derivatives
using FFT, as explained before. In the following, we denote
the Spectral TV of an image T based on the domain H as
TVH(T ).

IV. FINAL IMPLEMENTATION

A. Parameters

1) Visibility noise estimation: The MIRAS instrument
has 69 antennas of two different types: 66 antennas are
Light-Weight Cost-Effective Front-End (LICEF) and the other
three are Noise Level Injection Radiometers (NIR). Each
of these receivers has different noise levels. Because each
receiver from one arm correlates with all the receivers from
the other two arms, we can have three possible combinations:
LICEF-LICEF, LICEF-NIR and NIR-NIR (this last one is
not used here). The LICEF-LICEF baseline is known as
L-baseline while LICEF-NIR is a mixed baseline, noted
as M-baseline. The SMOS baseline is formed of 2145 L-
baselines and 198 M-baselines. The noise in visibilities, while
not Gaussian, can be well approximated as Gaussian noise
with standard deviation σV L = 0.098K and σVM = 0.21K
for the L-Baselines and M-Baselines, respectively. Then,
a whitening transform can be applied to the visibilities
resulting in a diagonal covariance matrix with fixed diagonal
entries. To summarize, we consider the visibilities (after the

aforementioned transformation) to be i.i.d. with Gaussian
distribution of zero mean and variance σn = 0.1. This
explains the squared `2 norm and the bound used for the data
fit term in the model presented so far.

2) Selection of µ: We propose to balance the trade-off
between the sparsity term S(O) and the regularity term
TVH(T ) based on modeling the outliers in the spatial domain
as follows. For a cylinder c of radius r and height h, the
involved norms or semi-norms are

TV (c) = 2πrh, ‖c‖0 = πr2
1[h>0], ‖c‖1 = πr2h.

The selection of µ determines whether the cylinder is consid-
ered to be an outlier or part of the image to be recovered. In
other words, the value of µ controls whether a given cylinder
is considered to belong to O or to T .

When the sparsity operator is the `1 norm, c is considered
as an outlier if TV (c) ≥ µ‖c‖1, leading to µ ≤ 2

r . In the
examples, we have selected a value µ ' 2

10 = 0.2, which
amounts to consider that the radii of the outliers are at most
10 pixels wide.

Note that since the resolution in the brightness temperature
map depends on the position in the image, for a fixed value
of 10 pixels the support of the outlier in meters depends on
its location. Notice moreover that the coefficients neglected in
FG∗GF∗ in order to make the inversion numerically tractable
correspond to high frequency components, and therefore some
amount of spread is introduced. The amount of spread being
signal dependent, for outliers of low intensity the value of 10 is
certainly too conservative, but for high intensities the spread
may be large and a choice of 10 pixels may be necessary
to ensure their complete elimination. A possible additional
strategy would consist in measuring the maximum brightness
temperature obtained by the zero padding method, and auto-
matically lower the number of outliers’ support pixel to 1 or
2 if the maximum brightness temperature falls within regular
Earth’s brightness temperature. This strategy was followed
in the synthetic experiment designed to show the spectral
extrapolation capability of the proposed approach, where the
outliers’ support was set to 1 pixel (Section V-A, Figure 9).

In the case of the `0 norm, a cylinder is considered as an
outlier as soon as TV (c) ≥ µ‖c‖0, i.e. µ ≤ 2h

r . Hence, µ
can then be interpreted as the minimal h/r outlier ratio. Here,
contrarily to the `1 case, the height (here expressed in Kelvin
units) plays an important role in distinguishing an outlier from
the data, and larger values for µ may be chosen ( µ ' 100 2

10 =
20).

3) Selection of λ: Parameter λ has to be chosen carefully
in order to make the unconstrained problem equivalent to the
constrained one. A wrong choice may drastically affect the
results. The correct value of λ depends of course on |Ω|σ2

n,
which is given. A classical way to set λ if we know the
expected noise variance σ2

n is to use Uzawa’s algorithm [21]:
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
(T k+1, Ok+1) = min

T,O
‖G(T +O)−DA‖22

+ λk(TV(T ) + µS(O)),

λk+1 = max{λk + ρ‖G(T k+1 +Ok+1)−DA‖22, 0}
(8)

The procedure consists in starting with a fixed λ0, then
solving the original problem with this λ0 and adjusting λk

iteratively, depending on how near or how far the solution is
to the original constraint (which is the noise present in the
model). The procedure continues with ensured convergence
until the data fit term is close enough to the expected noise
|Ω|σ2

n.

B. Numerical optimization

Several methods have been proposed in the literature to ac-
celerate the Fordward-Backward convergence rate. Two related
approaches are FISTA [22] and monotone-FISTA [23].

In FISTA, the main difference with the Fordward-Backward
is that each iteration depends on the two previous ones,
whereas in the Fordward-Backward algorithm it only depends
on the last one. This FISTA algorithm does not ensure
monotone convergence, which is not a desirable property
for an optimization algorithm. In [23], the authors introduce
a monotone version of this algorithm known as MFISTA
(Algorithm 2), that does not change the convergence rate of the
original FISTA algorithm, but guarantees monotonicity. Note

MFISTA

input : An upper bound L ≥ L(E1) on the Lipschitz
constant L(E1) of ∇(E1)

output: x, which is the solution to the problem
initialization:
Step 0: Set y1 = x0 where x0 is some initial value, and
t1 = 1;

Step k (k ≥ 1):

yk+1/2 = yk − γ
L∇E1(yk)

zk = prox γ
LE2

(yk+1/2)

tk+1 =
1+
√

1+4(tk)2

2
xk = arg min{E(x) : x = zk, xk−1}
yk+1 = xk + tk

tk+1 (zk − xk) + tk−1
tk+1 (xk − xk−1)

Algorithm 2: Monotone-FISTA

that xk can take two values: zk or xk−1. Depending on the
value it takes, the update of the yk+1 may be the same as the
one performed on FISTA: yk+1 = xk + tk−1

tk+1 (xk − xk−1) or
it may be given by yk+1 = xk + tk

tk+1 (zk − xk).
The final and complete algorithm is summarized in Algo-

rithm 3. The number of iterations and convergence rate depend
on each particular input data: if no outliers are present in the
image the method converges much faster. The general process
is slow: in the examples where outliers are present it takes
more than 100,000 iterations, corresponding to several hours.

The main reason is that in this case, the initial images are
initialized with identically null images. A simple improvement
consist on initializing the method with the results obtained
from the zero padding inversion. In this case, the method
converges in the order of thousands of iterations (in the worse
case) but in any case it takes several minutes to converge. It is
worth mentioning that these reported times were obtained with
a code that is not fully optimized, and where no parallelization
strategies (which are possible) were performed.

FINAL PROPOSED ALGORITHM

input : L1A SMOS Data - Visibilities: DA
output: A temperature image T , an outliers image O

initialisation: Set T 0 = 0 and O0 = 0 ;
Initialize Uzawa: Set λ0 = 1 and ρ ;
while s uzawa > uzawa tol do

Initialize MFISTA: Set T̃ 0 = T 0, Õ0 = O0 and
t0 = 1
while s fista > mfista tol do(Tktmp

Oktmp

)
= prox γ

LE2
(
(
Tk

Ok

)
− γ

L∇E1(T̃ k, Õk))

tk+1 =
1+
√

1+4(tk)2

2
if E(T ktemp, O

k
temp) < E(T k−1, Ok−1) then

T k = T ktemp ;
Ok = Oktemp ;
T̃ k+1 = T k + tk−1

tk+1 (T k − T k−1) ;
Õk+1 = Ok + tk−1

tk+1 (Ok −Ok−1) ;
else

T k = T k−1 ;
Ok = Ok−1 ;
T̃ k+1 = T k + tk

tk+1 (T ktemp − T k) ;
T̃ k+1 = Ok + tk

tk+1 (Oktemp −Ok) ;
end
s fista = E(T k−1, Ok−1)− E(T k, Ok)

end
s uzawa = λk + ρ‖G(T k +Ok)−DA‖22 ;
λk+1 = max{λk + ρ‖G(T k +Ok)−DA‖22, 0}

end
Algorithm 3: Final proposed algorithm

V. EXPERIMENTAL RESULTS

To show the advantages of the proposed framework, we
present two sets of experiments: synthetic simulated data, and
real data. We first present results on a set of simulated images
in order to evaluate qualitative and quantitative aspects of
the proposed method. We compare our approach to previous
works: a Fourier inversion of the L1B data, a simple Blackman
apodization to smooth the outliers effects, and our previous
L1B minimisation framework presented on [12].

A. Simulated Data
Because we are dealing among others with outliers removal,

we analyze the performance of the proposed method in the
following contexts:
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• No outliers are present in the image;
• Outliers with intensities in the same range as the Earth’s

brightness temperature
• Outliers with intensities on a larger range ([0,35000] K),

that corresponds to the range we have observed on real
data;

• Outliers located outside the image grid, that is, with sub-
pixel accuracy in non-integer positions.

• Only the synthetic Earth’s brightness temperature is con-
sidered (no instrumental noise nor outliers are added).
This scenario is considered to evaluate the extrapolation
power of the proposed approach.

To perform this analysis we need to simulate the data. The
process to generate the simulated images is the following:

1) We generate a temperatures image based on the prin-
ciples described on [24]. We denote this ground truth
image by Tgt;

2) With the given visibility variance σ2
n, we generate the

noise visibility nv as a random vector with independent,
identically distributed Gaussian entries with zero mean
and covariance matrix σ2

nId;
3) With the obtained image Tgt we compute a ground truth

visibility image: Vgt = GTgt;
4) We add the noise visibilities to the ground truth visibil-

ities to obtain an outlier-free noisy visibility snapshot:
Ṽ = Vgt + nv;

5) We now generate a set of outliers’ images, one for each
of the cases described above (no outliers, outliers in the
image range, outliers between [0,35000] K and outliers
outside the grid positions). Let us denote by Tδ any of
these synthetic outliers’ images. We can now obtain the
corresponding induced visibilities: Vδ = GTδ;

6) Finally, we obtain the simulated visibilities adding both
visibilities: Vf = Ṽ + Vδ = Vgt + Vδ + nv , which
are in full agreement with the image formation model
considered in this work.

The outliers positions and values are generated randomly, and
the number of outliers ranges from 2 to 10 (although this is
not a limitation but is based on the observation that rarely a
real image has more than 10 outliers).

Figure 5 shows the result of our method when applied to
an image where no outliers are present. We recall that no
modification to the functional is needed: we still consider the
sparsity operator on an image O, whose values at the end of
the minimization are all zero. Regarding the Earth’s brightness
temperature estimation T , because part of the error comes
from the attenuation of the image edges due to the bandpass
characteristics of the MIRAS instrument and the truncation
of FG∗GF∗ entries, we define a flat zone of 60× 60 pixels
(in this case in the central part of Spain) and we compute
the error in this flat zone. In this flat zone, the error is as
expected, smaller than 5K, which is in agreement with the
expected temperature noise model, σT = 5.0K [25]. More
details are given in the figure’s caption.

Figures 6 and 7 show the results obtained when outliers are
present in the scene. In the first case, the outliers intensity fall
within the Earth’s brightness temperature range; in the second

case, the outliers intensities range from 0 to 35000 K. Here
again, the proposed method is consistently better than the zero
padding approach and even in the presence of very big outliers
(35000 K) the `∞ error is 200 times smaller, leaving an error
of near 170 K, which is in the order of the ground truth image
values. See the figures’ captions for more details. Note that
despite the improved accuracy in brightness temperature T ,
the L1A method shows more artifacts in the image of outliers
O. This is due to the approximation of the matrix FG∗GF∗

by a sparse matrix in the Fourier domain. The approximation
level was in fact tuned to smooth temperature images having
a relatively fast decay in the Fourier domain. Outliers images,
on the other hand, decay much slower and are therefore more
sensitive to the Gibbs effects produced by spectral truncation.
When accurate detection of RFIs is important, our algorithm
should use the full G matrix at least during the last few
iterations. Localization accuracy of RFIs can also be further
improved by increasing the spatial resolution of our algorithm
or by switching to a continuous outlier model as discussed in
Section VI.

In Figure 8 we present the results obtained by the considered
methods when the outliers are not located on the sampling grid
points. It can be observed that the performance of the proposed
method continues to be consistent with the case where the
outliers were located on the grid.

Table I gives quantitative measures for the results obtained
with the proposed method in all the simulated scenarios. It
is clear that the method behaves consistently in all scenarios.
We can conclude that the method is well adapted for several
contexts that may occur on real data, and that no context-
dependent strategies are needed in order to apply it. In other
words, the method and its parameters can be set once for
all, independently on the observed data. We recall that in
all cases the standard deviation of the residual measured on
a flat zone of the spatial domain was smaller than 5K, the
expected temperature noise model. We can see from this table
a consistent improvement on the use of the proposed method
compared to the previous one.

We end this set of experiments on synthetic data with an
analysis of the ”spectral extrapolation” capability of the pro-
posed method.2 A comparison with the zero padding approach
is presented. In order to evaluate spectral extrapolation, the
input image is the simulated Earth’s brightness temperature: no
instrumental noise or outliers are added. For this experiment,
the outlier’s support in the proposed model was set to 1
pixel, following the strategy described in Section IV-A2.
Results are displayed on Figure 9. See caption for details.
The Fourier Transform of the obtained images, not presented
here, clearly shows for the proposed approach the hexagonal
spectral support standing out from the image background; for
the zero padding, what stands out is the star-shaped visibilities
sampling domain Ω. A similar experiment showing these
results patterns can be seen in [12, Figure 3].

2By this we do not pretend to create new information. TV and `1 ”spectral
extrapolation” only recreate the high frequency coefficients that are necessary
to avoid Gibbs effects that would otherwise be created by a sharp discontinuity
in the spatial domain.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. X, NO. X, MONTHX, 201X 8
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`1 (K) `2(K) `∞(K) `1 flat zone (K) `2 flat zone (K) Relative error `1 Relative error `2
TZP − Tgt 9.103 13.160 108.523 7.331 9.126 4.75% 6.31%
TZPB − Tgt 6.474 13.612 143.147 2.885 3.639 3.38% 6.52%
TL1A − Tgt 4.500 10.285 146.068 2.149 2.768 2.35% 4.93%

Fig. 5. Comparison with previous approaches when no outliers are present in the image. Notice the improvement both in the denoising power (the error on
the flat zone drops down to 2.8K) as well as on the spectral extrapolation (that can be easily seen on the edges of the difference images). This experiment
confirms that the proposed method is generic and that it performs well even when no outliers are present. Finally, the image O obtained was a constant
null image, in agreement with the model. Nevertheless, it is important to note that small zones are removed: for instance Ibiza and Formentera islands are
completely removed and Menorca is smoothed. Note that precision loss also occurs on the zero padding approach where Formentera is also removed and
Menorca is very smooth. Because we could not obtain an original restored image, we don’t know if this problem is related to the reconstruction process
or is the bandpass effect of the MIRAS instrument. We have tested our method without the outliers term in order to understand if these small islands were
considered as outliers. This was not the case (O is zero everywhere) which leads us to conjecture that the problem is more related to the bandpass nature of
the acquisition system.

`1(K) `2(K) `∞(K) `1 flat zone (K) `2 flat zone (K)
No outliers present in the image 6.376 12.982 146.068 2.149 2.768
Outliers with values on the image range 6.723 12.729 147.356 2.692 3.329
Outliers in the range [0,35000] K 6.366 14.245 170.410 1.657 2.050
Outliers outside grid position (25000 K) 6.552 14.129 166.184 1.533 2.032

TABLE I
QUANTITATIVE RESULTS OBTAINED WITH THE PROPOSED METHOD FROM SIMULATED DATA, IN DIFFERENT SCENARIOS: WITHOUT OUTLIERS, WITH

OUTLIERS INTENSITIES WITHIN THE RANGE OF THE IMAGE, WITH OUTLIERS LOCATED ON THE SAMPLING GRID POSITIONS AND OUTSIDE OF IT.
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`1 (K) `2 (K) `∞ (K) `1 flat zone (K) `2 flat zone (K) Relative error `1 Relative error `2
TZP − Tgt 9.564 13.734 101.326 7.345 9.377 4.99% 6.58%
TZPB − Tgt 6.688 13.726 140.964 2.934 3.684 3.49% 6.58%
TL1A − Tgt 5.171 10.417 147.356 2.692 3.329 2.70% 4.99%

Fig. 6. Analysis of the different methods when the outliers intensities fall within the range of the Earth’s brightness temperatures.

B. Experiments on real data

The second set of experiments was run on real data. We
compare results from our approach to those obtained by
previous works: a Fourier inversion of the L1B data, a simple
Blackman apodization to smooth the outliers effects, and
our previous L1B minimisation framework presented on [12].
Experiments were performed on several snapshots from the
SMOS dataset of march 2010. Here, for the sake of brevity,
we illustrate typical results presenting two snapshots. We have
set σn equal to 0.1, which is the measurement error reported
by the SMOS mission.

Figures 11 and 12 show the results obtained for snapshots
996 and 1050. For geographic reference, Figure 10 shows how
these regions look in Google Earth from approximately the
same viewing angles as the SMOS acquisitions. Note that
the acquired images are corrupted by several outliers that
considerably degrade the data. It is clear that the present
method outperforms both the direct inverse Fourier transform
and the Blackman apodization. It also improves the results
from our previous work based on L1B data, which resulted
in more regularised images and thus, valuable details where

Fig. 10. Google Earth view of two of the regions used on the experi-
ments. The left one corresponds to snapshot 996 (middle and northern Italy,
Switzerland, Austria, Slovenia and Croatia) and the right one to snapshot
1050 (western UK, northern France, Belgium, Netherlands, northern Germany,
eastern Poland, Denmark, Norway and Sweeden). Central European time zone,
UTC/GMT+01:00.

lost. An effect that can be seen, in particular in the L1A-based
restored brightness temperature image of central Europe, is the
correlation between land humidity and topography. Note, for
instance, the consistency of the humidity flow coming from the
Adriatic Sea and entering inlands in northern Italy, stopped the
by the barrier imposed by the Alpes.
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`1 (K) `2 (K) `∞ (K) `1 flat zone (K) `2 flat zone (K) Relative error `1 Relative error `2
TL1B − Tgt 9.875 16.107 173.525 8.769 10.588 5.15% 7.72%
TL1A − Tgt 4.674 13.083 170.410 1.657 2.050 2.44% 6.27%

Fig. 7. Results obtained with simulated data when several outliers with different intensities are present on the image. In this Figure, images obtained by
zero padding and Blackman are omitted since they are severely degraded by the presence of strong outliers (similar results to those presented in Figure 8). In
this example, outliers were generated on the following grid positions with its corresponding values: (-0.0357,-0.3093), 35.000 K; (-0.1429,0.0619), 10000 K;
(-0.3929,-0.0928), 25000 K; (0.5714, -0.1753), 800 K; (0.3304,-0.1289), 8000 K; (0.2589, 0.2629), 35000 K; (0.2589,-0.4897), 30000 K; (0.0357,-0.0515),
2000 K.
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`1 `2 `∞ `1 flat zone `2 flat zone Relative error `1 Relative error `2
TZP − Tgt 21.118 87.283 3335.699 61.675 155.806 11.00% 41.82%
TZPB − Tgt 8.240 41.006 1185.825 16.971 67.185 4.30% 19.65%
TL1A − Tgt 4.406 11.946 166.184 1.533 2.032 2.30% 5.72%

Fig. 8. Analysis of the different methods when the the outliers are not located on the sampling grid. Note that the method performs well, with a performance
similar to the one obtained when outliers are on grid positions. In this experiment, the outlier introduced in the image has an intensity of 20000 K.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have proposed a novel approach for the
restoration of images acquired by the SMOS mission. Two
fundamental contributions are presented: First, a variational
approach that seeks to restore the image of the Earth’s
brightness temperature on one side, and the image of outliers
or RFIs on the other side. The second contribution is the
use of the visibilities or L1A product as the data for the
restoration problem; up to our knowledge, this is the first
time this product is used for the restoration of SMOS images.
We use also a realistic noise model for the data, provided by
CESBIO (Centre d’Etudes Spatiales de la BIOsphère, France),
the agency responsible for the SMOS mission.

The parameters in the model are fixed once for all or
automatically adjusted by the optimization procedure, since
they are either derived from physical modeling or obtained
by formal procedures. Experiments on synthetic data show
the ability of our method to recover the Earth’s brightness
temperature with high precision. In summary, both experi-

ments on synthetic and real data confirm the suitability of
the proposed method, and show that results are of very
high quality, outperforming previous approaches proposed for
SMOS images restoration.

A side effect of the approach is the possibility to do subpixel
localization of the RFIs. The localization can be improved even
more by extrapolating on a finer sampling grid, but this implies
a computational cost that increases with the target sub pixel
precision. Alternatively one could use finite rate of innovation
models (originally introduced in [26] and further developed
in [27], [28]) where the outliers are modeled as continuous
Dirac deltas that can be localized with arbitrary precision, even
when the acquired image has limited resolution. This, as well
as the exploration of other optimization techniques in order to
improve convergence speed (e.g. [14], [29]), will be addressed
in the near future.
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`1(K) `2 (K) `∞ (K) `1 flat zone (K) `2 flat zone (K)
TZP − Tgt 4.706 9.671 110.410 1.707 2.371
TL1A − Tgt 2.753 7.859 89.453 0.952 1.484

Fig. 9. Comparison of extrapolation results. In this test, we only analyse the results of the bandpass effect of the MIRAS instrument. No instrumental
noise or outliers are added to the input ground truth image. In the first row, we show the result of computing TL1B = J+GTgt. The error reported on the
corresponding table is only related to the bandpass matrix G and zero padding solution with its corresponding matrix J+. It is clear from this example that
our method truly performs a spectral extrapolation, whose effects can be easily observed both on the image edges and on the reduction of Gibbs oscillations
in the hole image. These two aspects can also be observed in the associated table, on the reported values of `1 and `2 error norms and on the more localized
error on the flat zone, respectively.

APPENDIX
PROXIMAL OPERATORS

For the sake of completeness, we include the derivation of
each of the proximal operators involved in this work. We first
recall the proximal operator definition of a functional E:

proxγE(x) = arg inf
y

E(y) +
1

2γ
‖x− y‖2.

Proposition 1 (Proximal operators of `0 and `1 norms).
proxγ‖·‖1(o))[i] = τγ(o[i]), proxγ‖·‖0(o))[i] = sγ(o[i]),
where

τγ(t) =

{
sign(t) (|t| − γ) if |t| ≥ γ
0 if |t| < γ

sγ(t) =

{
|t| if |t| ≥ γ
0 if |t| < γ

are the hard and soft thresholding operators, respectively.

A. Derivation of proxγ TVH
proximal operator

We recall first the definition of the total variation semi-norm
of an image u : Ω ⊂ R2 → R:

TV (T ) = sup
ψ∈C1

c (Ω,R2), ‖ψ‖L∞(Ω)≤1

{∫
Ω

u(x) divψ(x)dx

}
.

With this notation, proxγTV can be expressed:

proxγTV(u) = arg inf
y

TV (y) +
1

2γ
‖u− y‖2.

Chambolle [13] proves that the solution to this minimization
problem can be expressed as the projection into a suitable
convex set:

Proposition 2. The unique solution for proxγTV(u) is given by
y = u−PγG(y), where PγG(y) is the projection of y into the
set γG, and G = {v ∈ X; ∃ p ∈ X, |p| ≤ 1 s.t. v = div p}.
The set X = RN2

is the set of all discrete images of size N2.

The projection PγG(y), defined by

arg min
p∈X×X,|pi,j |≤1∀i,j=1,..,N

{
|γ div p− u|2X×X

}
,

can be computed iteratively as

pn+1
i,j =

pni,j + τ(∇(div pn − u/γ))i,j

1 + τ |∇(div pn − u/γ))i,j |
.

Chambolle [13] has proven that, if 0 < τ ≤ 1
8 then γ div pn

converges to PγG(y) as n→∞. Finally,

proxγTV(u) = u− lim
n→∞

γ div pn.

In our case, the spectral TV minimization consists in
restricting the frequency domain to the cell H, i.e.

min
u∈BL(H)

TV (u) + DataFit(u),
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Zero Padding Using L1B method The proposed L1A method

ZP+Blackman Using L1B method, E-AF-FOV The proposed L1A method, E-AF-FOV
Fig. 11. Comparison between previous works and our method. This snapshot corresponds to Central Europe, with Italy clearly visible, and was acquired on
march 2010. Color scale ranges from 0 to 300 Kelvin.

Zero Padding Using L1B method The proposed L1A method

ZP+Blackman Using L1B method, E-AF-FOV The proposed L1A method, E-AF-FOV
Fig. 12. Comparison between previous works and our method. This snapshot corresponds to Northern Europe and was acquired on march 2010. Color scale
ranges from 0 to 300 Kelvin.
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where BL(H) denotes the space of band limited functions
with spectral support within H. This constraint can be inte-
grated into the TV operator by means of the indicator function:

ιA(x) =

{
0 if x ∈ A
+∞ if x /∈ A

Then the proximal operator for the spectral TV becomes

proxγ TVH
(u) := proxγTV+ιBL(H)

(u).

Since the sub differential of the indicator function ιA is the
projection operator PA, we can easily show from the previous
expression that a slight modification in Chambolle’s algorithm
yields the proximal operator for the spectral TV:

Proposition 3. Let u ∈ BL(H), and 0 < τ ≤ 1
8 . Then the fol-

lowing algorithm with un = −γvn converges to proxγ TVH
(u)

1) p0 = 0, v0 = −u/γ, n = 0

2) pn+1 = PBL(H)

(
pn+τ∇vn
1+τ‖∇vn‖

)
3) vn+1 = div pn + v0

4) If not converged go to step 2

Note that the only modification w.r.t. Chambolle’s algorithm
is the spectral projection PBL(H) at each iteration pn.
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[28] V. Duval and G. Peyré, “Exact Support Recovery for Sparse Spikes
Deconvolution,” CEREMADE - Univ. de Paris Dauphine, Tech. Rep.,
Jun. 2013. [Online]. Available: http://arxiv.org/abs/1306.6909

[29] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively
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